((6x^2)-2)/((x-1)^3)((x+1)^3)=0

Simple and best practice solution for ((6x^2)-2)/((x-1)^3)((x+1)^3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((6x^2)-2)/((x-1)^3)((x+1)^3)=0 equation:



((6x^2)-2)/((x-1)^3)((x+1)^3)=0
Domain of the equation: ((x-1)^3)((x+1)^3)!=0
x∈R
We multiply all the terms by the denominator
(6x^2-2)=0
We get rid of parentheses
6x^2-2=0
a = 6; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·6·(-2)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*6}=\frac{0-4\sqrt{3}}{12} =-\frac{4\sqrt{3}}{12} =-\frac{\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*6}=\frac{0+4\sqrt{3}}{12} =\frac{4\sqrt{3}}{12} =\frac{\sqrt{3}}{3} $

See similar equations:

| 3.4(2m-4)=6.8m-13.6 | | -3(7r-4)+3(2r-8)=78 | | 23,8=3.5b | | 8x-5=30+3x | | 11.5-3y=1 | | -19=5m+17 | | 500=250+5n-2n^2 | | 6.5+h=-8 | | P(x)=x(72-4x)-(121+12x) | | 7x*8x=(5x+3)(10x-2) | | -7/3v=14 | | 3(x-2)-6=8x+6(1-x) | | 60x+90=45x+18 | | 5-(x+7)=3x-2(x-4) | | 6/10=m/14 | | -2(x+4)=4•2(x-2)-2x | | 8d-32+24d-32=40 | | 180=(2x)+(x+24)+(x-4) | | .3x+2=17 | | 4(w+1)=-6 | | 15r-21=-6 | | 5m=4m+5 | | 4x^2+2x-21=0 | | 27x-18=18x+72 | | 20-4x+4x=8x+8x+4x | | 2x+1/12=3/4 | | 70=4.40x+20.72+11x | | 8u=-16/3 | | -3(x+2+1=x-25 | | x+2x-2=52 | | 2(x=3)-x=2x+8 | | 9=-3/8u |

Equations solver categories